Path‐seq identifies an essential mycolate remodeling program for mycobacterial host adaptation

  • Peterson E
  • Bailo R
  • Rothchild A
  • et al.
41Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

© 2019 The Authors. Published under the terms of the CC BY 4.0 license The success of Mycobacterium tuberculosis (MTB) stems from its ability to remain hidden from the immune system within macrophages. Here, we report a new technology (Path-seq) to sequence miniscule amounts of MTB transcripts within up to million-fold excess host RNA. Using Path-seq and regulatory network analyses, we have discovered a novel transcriptional program for in vivo mycobacterial cell wall remodeling when the pathogen infects alveolar macrophages in mice. We have discovered that MadR transcriptionally modulates two mycolic acid desaturases desA1/desA2 to initially promote cell wall remodeling upon in vitro macrophage infection and, subsequently, reduces mycolate biosynthesis upon entering dormancy. We demonstrate that disrupting MadR program is lethal to diverse mycobacteria making this evolutionarily conserved regulator a prime antitubercular target for both early and late stages of infection.

Cite

CITATION STYLE

APA

Peterson, E. J., Bailo, R., Rothchild, A. C., Arrieta‐Ortiz, M. L., Kaur, A., Pan, M., … Baliga, N. S. (2019). Path‐seq identifies an essential mycolate remodeling program for mycobacterial host adaptation. Molecular Systems Biology, 15(3). https://doi.org/10.15252/msb.20188584

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free