The effect of axial impeller geometry on the link between power and flow numbers

5Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Stirred vessels are used to facilitate mixing processes across a wide range of industries. Their performance can often be predicted with certain characteristics of the agitator, like the dimensionless power and flow numbers. Since there exists a large number of agitator designs and geometries, it is desirable to be able to predict these characteristics using models rather than rely on previous experimental data. In this study, we use an angular momentum balance combined with computational fluid dynamics to correlate the power, flow, and mixer geometry across a wide range of down-pumping pitched blade turbine geometries. The models developed from the results allow us to predict the power from the flow (or vice versa) for the geometries investigated. We tested two methods for the measurement of the flow rate and found that the choice of measurement method can affect the relationship between the power, flow, and impeller geometry.

Cite

CITATION STYLE

APA

John, T. P., Fonte, C. P., Kowalski, A., & Rodgers, T. L. (2023). The effect of axial impeller geometry on the link between power and flow numbers. AIChE Journal, 69(3). https://doi.org/10.1002/aic.17871

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free