This paper presents an evolutionary based technique for solving the multi-objective based economic environmental dispatch by considering the stochastic behavior of renewable energy resources (RERs). The power system considered in this paper consists of wind and solar photovoltaic (PV) generators along with conventional thermal energy generators. The RERs are environmentally friendlier, but their intermittent nature affects the system operation. Therefore, the system operator should be aware of these operating conditions and schedule the power output from these resources accordingly. In this paper, the proposed EED problem is solved by considering the nonlinear characteristics of thermal generators, such as ramp rate, valve point loading (VPL), and prohibited operating zones (POZs) effects. The stochastic nature of RERs is handled by the probability distribution analysis. The aim of proposed optimization problem is to minimize operating cost and emission levels by satisfying various operational constraints. In this paper, the single objective optimization problems are solved by using particle swarm optimization (PSO) algorithm, and the multi-objective optimization problem is solved by using the multi-objective PSO algorithm. The feasibility of proposed approach is demonstrated on six generator power system.
CITATION STYLE
Salkuti, S. R. (2020). Multi-objective based economic environmental dispatch with stochastic solar-wind-thermal power system. International Journal of Electrical and Computer Engineering, 10(5), 4543–4551. https://doi.org/10.11591/ijece.v10i5.pp4543-4551
Mendeley helps you to discover research relevant for your work.