We examined whether exercise is associated with hippocampus-medi-ated improvement in insulin signaling and cell differentiation in the triple transgenic mouse model of Alzheimer disease (3xTg AD) murine model following exposure to 40-Hz light flickering and exercise. We subjected 12-month-old 3xTg AD mice to exercise and 40-Hz light flickering for 3 months. The exercise session was proceeded for 12 consecutive weeks with gradual increase of intensity. To investigate insulin signaling proteins, western blot was conducted to detect the ratio of phosphory-lated insulin receptor β (p-IRβ)/total IRβ (t-IRβ), phosphorylated insulin receptor substrate 1 (p-IRS-1)/total IRS-1 (t-IRS-1), phosphorylated phosphatidylinositide-3-kinase (p-PI3K)/total PI3K (t-PI3K), phosphory-lated 3-phosphoinositide dependent protein kinase-1 (p-PDK1)/total PDK-1 (t-PDK1), phosphorylated protein kinase B (p-Akt)/total-Akt (t-Akt), and phosphorylated glycogen synthase kinase 3 beta (p-GSK3β)/total GSK3β (t-GSK3β). Doublecortin immunohistochemistry was per-formed for assessing cell differentiation in the hippocampus. Treatments exerted a positive effect. The combination of exercise and 40-Hz light flickering exposure was the most effective treatment enhancing insulin signaling. Increased ratio of p-IRβ/t-IRβ, p-IRS-1/t-IRS-1, p-PI3K/t-PI3K, p-PDK1/t-PDK1, p-Akt/t-Akt, and p-GSK3β/t-GSK3β and enhanced cell differentiation were observed in the 3xTg AD with exercise under 40-Hz light flickering group. Our results indicate that exercise under 40-Hz light flickering most potently improved insulin signaling, thereby promoted cell differentiation
CITATION STYLE
Kim, S. H., Park, S. S., Kim, C. J., & Kim, T. W. (2022). Exercise with 40-Hz light flicker improves hippocampal insulin signaling in Alzheimer disease mice. Journal of Exercise Rehabilitation, 18(1), 20–27. https://doi.org/10.12965/jer.2244042.021
Mendeley helps you to discover research relevant for your work.