A lightweight privacy-preserving communication protocol for heterogeneous IoT environment

52Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

While Internet-of-Things (IoT) significantly facilitates the convenience of people's daily life, the lack of security practice raises the risk of privacy-sensitive user data leakage. Securing data transmission among IoT devices is therefore a critical capability of IoT environments such as Intelligent Connected Vehicles, Smart Home, Intelligent City and so forth. However, cryptographic communication scheme is challenged by the limited resource of low-cost IoT devices, even negligible extra CPU usage of battery-powered sensors would result in dramatical decrease of the battery life. In this paper, to minimize the resource consumption, we propose a communication protocol involving only the symmetric key-based scheme, which provides ultra-lightweight yet effective encryptions to protect the data transmissions. Symmetric keys generated in this protocol are delegated based on a chaotic system, i.e., Logistic Map, to resist against the key reset and device capture attacks. We semantically model such protocol and analyze the security properties. Moreover, the resource consumption is also evaluated to guarantee runtime efficacy.

Cite

CITATION STYLE

APA

Luo, X., Yin, L., Li, C., Wang, C., Fang, F., Zhu, C., & Tian, Z. (2020). A lightweight privacy-preserving communication protocol for heterogeneous IoT environment. IEEE Access, 8, 67192–67204. https://doi.org/10.1109/ACCESS.2020.2978525

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free