Technologies to differentiate human pluripotent stem cells into threedimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.
CITATION STYLE
Qian, X., Nguyen, H. N., Jacob, F., Song, H., & Ming, G. L. (2017). Using brain organoids to understand Zika virus-induced microcephaly. Development (Cambridge), 144(6), 952–957. https://doi.org/10.1242/dev.140707
Mendeley helps you to discover research relevant for your work.