Deep Knowledge Tracing Based on Spatial and Temporal Representation Learning for Learning Performance Prediction

19Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Knowledge tracing (KT) serves as a primary part of intelligent education systems. Most current KTs either rely on expert judgments or only exploit a single network structure, which affects the full expression of learning features. To adequately mine features of students’ learning process, Deep Knowledge Tracing Based on Spatial and Temporal Deep Representation Learning for Learning Performance Prediction (DKT-STDRL) is proposed in this paper. DKT-STDRL extracts spatial features from students’ learning history sequence, and then further extracts temporal features to extract deeper hidden information. Specifically, firstly, the DKT-STDRL model uses CNN to extract the spatial feature information of students’ exercise sequences. Then, the spatial features are connected with the original students’ exercise features as joint learning features. Then, the joint features are input into the BiLSTM part. Finally, the BiLSTM part extracts the temporal features from the joint learning features to obtain the prediction information of whether the students answer correctly at the next time step. Experiments on the public education datasets ASSISTment2009, ASSISTment2015, Synthetic-5, ASSISTchall, and Statics2011 prove that DKT-STDRL can achieve better prediction effects than DKT and CKT.

Cite

CITATION STYLE

APA

Lyu, L., Wang, Z., Yun, H., Yang, Z., & Li, Y. (2022). Deep Knowledge Tracing Based on Spatial and Temporal Representation Learning for Learning Performance Prediction. Applied Sciences (Switzerland), 12(14). https://doi.org/10.3390/app12147188

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free