AN ATLAS OF CORONAL ELECTRON DENSITY AT 5R⊙. I. DATA PROCESSING AND CALIBRATION

38Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Tomography of the solar corona can provide cruicial constraints for models of the low corona, unique information on changes in coronal structure and rotation rates, and a valuable boundary condition for models of the heliospheric solar wind. This is the first of a series of three papers which aim to create a set of maps of the coronal density over an extended period (1996-present). The papers will describe the data processing and calibration (this paper), the tomography method (Paper II), and the resulting atlas of coronal electron density at a height of 5 R⊙ between years 1996-2014 (Paper III). This first paper presents a detailed description of data processing and calibration for the Large-Angle and Spectrometric Coronagraph (LASCO) C2 instrument on board the Solar and Heliospheric Observatory (SOHO) and the COR2 instruments of the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) package on board the Solar Terrestial Relations Observatory (STEREO) A and B spacecraft. The methodology includes noise suppression, background subtraction, separation of large dynamic events, conversion of total brightness to K-coronal brightness, and simple functions for cross-calibration between C2/LASCO and COR2/SECCHI. Comparison of the brightness of stars between LASCO C2 total and polarized brightness (pB) observations provide in-flight calibration factors for the pB observations, resulting in considerable improved agreement between C2 and COR2 A, and elimination of curious artifacts in the C2 pB images. The cross-calibration between LASCO C2 and the STEREO coronagraphs allows, for the first time, the potential use of multi-spacecraft coronagraph data for tomography and for coronal mass ejection analysis.

Cite

CITATION STYLE

APA

Morgan, H. (2015). AN ATLAS OF CORONAL ELECTRON DENSITY AT 5R⊙. I. DATA PROCESSING AND CALIBRATION. Astrophysical Journal, Supplement Series, 219(2). https://doi.org/10.1088/0067-0049/219/2/23

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free