Energy-efficient ultrafast nucleation of single and multiple antiferromagnetic skyrmions using in-plane spin polarized current

5Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We numerically investigate the ultrafast nucleation of antiferromagnetic (AFM) skyrmion using in-plane spin-polarized current and present its key advantages over out-of-plane spin-polarized current. We show that the threshold current density required for the creation of AFM skyrmion is almost an order of magnitude lower for the in-plane spin-polarized current. The nucleation time for the AFM skyrmion is found to be 12 - 7 ps for the corresponding current density of 1–3×1013A/m2. We also demonstrate ultrafast nucleation of multiple AFM skyrmions that is possible only with in-plane spin polarized current and discuss how the current pulse width can be used to control the number of AFM skyrmions. The results show more than one order of magnitude improvement in energy consumption for ultrafast nucleation of AFM skyrmions using in-plane spin-polarized current, which is promising for applications such as logic gates, racetrack memory, and neuromorphic computing.

Cite

CITATION STYLE

APA

Khan, K. I. A., Sisodia, N., & Muduli, P. K. (2021). Energy-efficient ultrafast nucleation of single and multiple antiferromagnetic skyrmions using in-plane spin polarized current. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-91591-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free