In order to extract information about the properties of compact binaries, we must estimate the noise power spectral density of gravitational-wave data, which depends on the properties of the gravitational-wave detector. In practice, it is not possible to know this perfectly, only to estimate it from the data. Multiple estimation methods are commonly used, and each has a corresponding statistical uncertainty. However, this uncertainty is widely ignored when measuring the physical parameters describing compact binary coalescences, and the appropriate likelihoods which account for the uncertainty are not well known. In order to perform increasingly precise astrophysical inference and model selection, it will be essential to account for this uncertainty. In this work, we derive the correct likelihood for one of the most widely used estimation methods in gravitational-wave transient analysis, the median average. We demonstrate that simulated Gaussian noise follows the predicted distributions. We then examine real gravitational-wave data at and around the time of GW151012, a relatively low-significance binary black hole merger event. We find that the difference in our inference when using different PSD estimation techniques is larger than the predicted statistical uncertainty.
CITATION STYLE
Talbot, C., & Thrane, E. (2020). Gravitational-wave astronomy with an uncertain noise power spectral density. Physical Review Research, 2(4). https://doi.org/10.1103/PhysRevResearch.2.043298
Mendeley helps you to discover research relevant for your work.