Box-Ball System: Soliton and Tree Decomposition of Excursions

2Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We review combinatorial properties of solitons of the Box-Ball system introduced by Takahashi and Satsuma (J Phys Soc Jpn 59(10):3514–3519, 1990). Starting with several definitions of the system, we describe ways to identify solitons and review a proof of the conservation of the solitons under the dynamics. Ferrari et al. (Soliton decomposition of the box-ball system (2018). arXiv:1806.02798) proposed a soliton decomposition of a configuration into a family of vectors, one for each soliton size. Based on this decompositions, the authors (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020) propose a family of measures on the set of excursions which induces invariant distributions for the Box-Ball System. In the present paper, we propose a new soliton decomposition which is equivalent to a branch decomposition of the tree associated to the excursion, see Le Gall (Une approche élémentaire des théorèmes de décomposition de Williams. In: Séminaire de Probabilités, XX, 1984/85, vol. 1204, pp. 447–464. Lecture Notes in Mathematics. Springer, Berlin (1986)). A ball configuration distributed as independent Bernoulli variables of parameter λ < 1∕2 is in correspondence with a simple random walk with negative drift 2λ − 1 and having infinitely many excursions over the local minima. In this case the soliton decomposition of the walk consists on independent double-infinite vectors of iid geometric random variables (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020). We show that this property is shared by the branch decomposition of the excursion trees of the random walk and discuss a corresponding construction of a Geometric branching process with independent but not identically distributed Geometric random variables.

Cite

CITATION STYLE

APA

Ferrari, P. A., & Gabrielli, D. (2020). Box-Ball System: Soliton and Tree Decomposition of Excursions. In Progress in Probability (Vol. 75, pp. 107–152). Birkhauser. https://doi.org/10.1007/978-3-030-57513-7_5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free