The K-Nearest Neighbors (k-NN) classifier has become a well-known, successful method for pattern classification tasks. In recent years, many enhancements to the original algorithm have been proposed. Fuzzy sets theory has been the basis of several proposed models towards the enhancement of the nearest neighbors rule, being the Fuzzy K-Nearest Neighbors (FuzzyKNN) classifier the most notable procedure in the field. In this work we present a new approach to the nearest neighbor classifier based on the use of interval valued fuzzy sets. The use and implementation of interval values facilitates the membership of the instances and the computation of the votes in a more flexible way than the original FuzzyKNN method, thus improving its adaptability to different supervised learning problems. An experimental study, contrasted by the application of nonparamet-ric statistical procedures, is carried out to ascertain whether the Interval Valued K-Nearest Neighbor (IV-KNN) classifier proposed here is significantly more accurate than k-NN, FuzzyKNN and other fuzzy nearest neighbor classifiers. We conclude that the IV-KNN is indeed significantly more accurate than the rest of classifiers analyzed.
CITATION STYLE
Derrac, J., Chiclana, F., García, S., & Herrera, F. (2015). An Interval Valued K-Nearest Neighbors Classifier. In Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (Vol. 89). Atlantis Press. https://doi.org/10.2991/ifsa-eusflat-15.2015.55
Mendeley helps you to discover research relevant for your work.