Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport

216Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

High density lipoprotein (HDL) isolated from human atherosclerotic lesions and the blood of patients with established coronary artery disease contains elevated levels of 3-nitrotyrosine and 3-chlorotyrosine. Myeloperoxidase (MPO) is the only known source of 3-chlorotyrosine in humans, indicating that MPO oxidizes HDL in vivo. In the current studies, we used tandem mass spectrometry to identify the major sites of tyrosine oxidation when lipid-free apolipoprotein A-I (apoA-I), the major protein of HDL, was exposed to MPO or peroxynitrite (ONOO-). Tyrosine 192 was the predominant site of both nitration and chlorination by MPO and was also the major site of nitration by ONOO -. Electron paramagnetic spin resonance studies of spin-labeled apoA-I revealed that residue 192 was located in an unusually hydrophilic environment. Moreover, the environment of residue 192 became much more hydrophobic when apoA-I was incorporated into discoidal HDL, and Tyr 192 of HDL-associated apoA-I was a poor substrate for nitration by both myeloperoxidase and ONOO-, suggesting that solvent accessibility accounted in part for the reactivity of Tyr192. The ability of lipid-free apoA-I to facilitate ATP-binding cassette transporter A1 cholesterol transport was greatly reduced after chlorination by MPO. Loss of activity occurred in concert with chlorination of Tyr192. Both ONOO - and MPO nitrated Tyr192 in high yield, but unlike chlorination, nitration minimally affected the ability of apoA-I to promote cholesterol efflux from cells. Our results indicate that Tyr192 is the predominant site of nitration and chlorination when MPO or ONOO- oxidizes lipid-free apoA-I but that only chlorination markedly reduces the cholesterol efflux activity of apoA-I. This impaired biological activity of chlorinated apoA-I suggests that MPO-mediated oxidation of HDL might contribute to the link between inflammation and cardiovascular disease.

Cite

CITATION STYLE

APA

Shao, B., Bergt, C., Fu, X., Green, P., Voss, J. C., Oda, M. N., … Heinecke, J. W. (2005). Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. Journal of Biological Chemistry, 280(7), 5983–5993. https://doi.org/10.1074/jbc.M411484200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free