The design of complex circuits as SoCs presents two great challenges to designers. One is the speeding up of system functionality modeling and the second is the implementation of the system in an architecture that meets performance and power consumption requirements. Thus, developing new high-level specification mechanisms for the reduction of the design effort with automatic architecture exploration is a necessity. This paper proposes an Electronic-System-Level (ESL) approach for system modeling and cache energy consumption analysis of SoCs called PCacheEnergyAnalyzer. It uses as entry a high-level UML-2.0 profile model of the system and it generates a simulation model of a multicore platform that can be analyzed for cache tuning. PCacheEnergyAnalyzer performs static/dynamic energy consumption analysis of caches on platforms that may have different processors. Architecture exploration is achieved by letting designers choose different processors for platform generation and different mechanisms for cache optimization. PCacheEnergyAnalyzer has been validated with several applications of Mibench, Mediabench, and PowerStone benchmarks, and results show that it provides analysis with reduced simulation effort. Copyright © 2011 Abel G. Silva-Filho et al.
CITATION STYLE
Silva-Filho, A. G., Cordeiro, F. R., Araújo, C. C., Sarmento, A., Gomes, M., Barros, E., & Lima, M. E. (2011). An ESL approach for energy consumption analysis of cache memories in soc platforms. International Journal of Reconfigurable Computing, 2011. https://doi.org/10.1155/2011/219497
Mendeley helps you to discover research relevant for your work.