Fever can affect the majority of patients with subarachnoid hemorrhage (SAH) and many times no identifiable source is found for the fever whether infectious or sterile, like deep vein thrombosis. We hypothesized that fever in SAH is mediated by a NON-cyclo-oxygenase-dependent mechanism, which we neologized as subarachnoid hemorrhage–induced pyrexia (SAHiP). This hypothesis was investigated using genetically modified mice, pharmacological manipulation, cerebrospinal fluid from SAH patients, and a large cohort of SAH patients. Mice with deletions of neuronal prostaglandin EP3 receptor, global toll-like receptor 4 (TLR4), myeloid TLR4, and microglial TLR4 were subjected to SAH after being implanted with thermometers. Pathways necessary for SAHiP were identified. In SAH patients, cerebrospinal fluid was examined by flow cytometry and correlated with SAHiP. From a large cohort of SAH patients, independent associations with SAHiP were determined using logistic regression analysis. In our mouse model of SAH, microglial TLR4 is necessary for SAHiP, but independent of the neuronal prostaglandin EP3 receptor, cyclo-oxygenase, and prostaglandins. Macrophages from the cerebrospinal fluid of SAH patients with SAHiP expressed more TLR4-co-receptor than SAH patients without SAHiP. In a large cohort of SAH patients, SAHiP was found to be independently, yet inversely, associated with acetaminophen administration. SAHiP is independent of the neuronal prostaglandin EP3 receptor, cyclo-oxygenase, and prostaglandins, but dependent on microglial/macrophage TLR4 with evidence from both SAH mouse models and SAH patients.
CITATION STYLE
Thomas, A. J., Ascanio-Cortez, L., Gomez, S., Salem, M., Maragkos, G., & Hanafy, K. A. (2020). Defining the Mechanism of Subarachnoid Hemorrhage–Induced Pyrexia. Neurotherapeutics, 17(3), 1160–1169. https://doi.org/10.1007/s13311-020-00866-x
Mendeley helps you to discover research relevant for your work.