Introduction In the United States (US), pressure injuries are believed to affect over 2.5 million people. The prevalence of pressure ulcers in the European Union (EU) is believed to be 13.7%. Recent guidelines have recommended the consideration of polyurethane foam dressings as part of pressure injury prevention strategies. This study assesses the reduction in tissue strain and stresses associated with the use of a new silicone foam dressing. Methods Finite element analysis (FEA) models were used to investigate the ability of silicone foam dressings to reduce tissue stress and strain energy density (SED) in the regions adjacent to the sacral bone. The loading modeled on the dressings was for combined compression and shear (modeling a patient lying in a 45° Fowler's position). Nine commercially available silicone foam dressings and a no-dressing control were modeled. Results FEA modeling showed that all silicone dressings tested, including Tegaderm™ Silicone Foam (TSF; 3M Health Care, St. Paul, MN) dressings, achieved reductions in tissue distortional stress and SED relative to no-dressing conditions. The use of silicone foam dressing results in a lower volume of tissue at higher stresses and deformation compared to no dressing. Conclusion The results presented indicate that TSF may provide an appropriate option for pressure ulcer prevention programs.
CITATION STYLE
Sieracki, J., Wilkes, R., Bennett, E. R., & McNulty, A. K. (2020). Finite Element Analysis Modeling of a Novel Silicone Dressing. Cureus. https://doi.org/10.7759/cureus.10629
Mendeley helps you to discover research relevant for your work.