Universal COVID-19 Vaccine Targeting SARS-CoV-2 Envelope Protein

  • Tsai C
N/ACitations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had caused over 382 million cases and over 2.7 million deaths globally as of 23 March 2021. By that date, at least 10 SARS-CoV-2 variants had emerged. The transmissibility and lethality of the variants are higher than those of the Wuhan reference strain. Therefore, a universal vaccine for the reference strain and all variants (present and future) is indispensable. The coronavirus envelope (E) protein is an integral membrane protein crucial to the viral lifecycle and the pathogenesis of coronaviruses. The SARS-CoV-2 E protein has a postsynaptic density protein 95/Drosophila disc large tumor suppressor/zonula occludens-1 (PDZ) binding motif (PBM), and its interaction with PDZ-domain-2 of the human tight junction protein may interrupt the integrity of lung epithelium. Furthermore, the SARS-CoV-2 E protein itself is a homopentameric cation channel viroporin, which may be involved in viral release. This protein is thus a potential target for the development of a universal COVID-19 vaccine, because of its highly conserved amino acid sequence. The variant mutations occur mainly in the spike protein, and conservation of E protein remained in most Variants of Concern (VOC). Only one of the extant VOC have mutations in the E protein that P71L mutation occurs in the South African variant 501Y.V2 (B.1.351). If a vaccine is designed to target E protein, two scenarios are possible: 1) SARS-CoV-2 maintains a highly conserved E protein amino acid sequence, rendering the virus consistently or permanently susceptible to the vaccine; or 2) the E protein mutates and new variants evolve accordingly. In scenario 2, the tertiary structure and function of the E protein homopentameric cation channel viroporin, PBM, or other aspects affecting pathogenicity would be attenuated. Either scenario would thus ameliorate the pandemic. I therefore propose that a vaccine targeting the SARS-CoV-2 E protein would be effective against the Wuhan reference strain and all current and future SARS-CoV-2 variants. Efforts to create E protein-based vaccines are ongoing. Further research and clinical trials are needed to realize this universal COVID-19 vaccine.

Cite

CITATION STYLE

APA

Tsai, C.-M. (2021). Universal COVID-19 Vaccine Targeting SARS-CoV-2 Envelope Protein. World Journal of Vaccines, 11(03), 19–27. https://doi.org/10.4236/wjv.2021.113003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free