Optimization Strategy of Sustainable Concentrated Photovoltaic Thermal (CPVT) System for Cooling

3Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Renewable energy resources are susceptible to intermittent power supply, and their standalone operation has prime importance for steady power supply. Solar energy resources have high global availability and potential among all energy sources. Most of areas with high solar energy potential have either dry hot or tropical climate. A major portion of primary energy supply for such area is utilized in their cooling energy needs. In this chapter, a sustainable approach for cooling needs has been proposed using solar energy-based highly efficient concentrated photovoltaic (CPV). A combined cooling system, based upon mechanical vapour compression (MVC), and adsorption chillers have been considered. The MVC chiller utilizes the produced electricity by the third -generation multi-junction solar cells (MJCs). However, adsorption chiller is operated with thermal energy recovered from the cooling of CPV system, which also increases the system efficiency as high as 71%. To handle intermittency, hydrogen production is used primary energy storage system, along with the hot water storage. The complete system configuration is then optimized for standalone operation with optimum components size and minimum cost, using micro-genetic algorithm according to proposed optimization strategy.

Cite

CITATION STYLE

APA

Burhan, M., Shahzad, M. W., & Ng, K. C. (2019). Optimization Strategy of Sustainable Concentrated Photovoltaic Thermal (CPVT) System for Cooling. In Energy, Environment, and Sustainability (pp. 255–275). Springer Nature. https://doi.org/10.1007/978-981-13-3284-5_12

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free