A Novel Single-Tube Eicosaplex/Octaplex PCR System for the Detection of Extended-Spectrum β-Lactamases, Plasmid-Mediated AmpC β-Lactamases, and Integrons in Gram-Negative Bacteria

8Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

We developed two multiplex polymerase chain reactions (PCRs) for the detection of extended-spectrum β-lactamases (ESBLs), plasmid-mediated AmpC β-lactamases, aac(6′)-Ib gene, and integrase genes (intI1, intI2, and intI3) in class 1, 2, and 3 integrons in Gram-negative bacteria. We evaluated the PCRs using 109 Gram-negative isolates from non-organic (ANO) and organic (AO) vegetables and fruits. Screening of ANO substances identified five SHV, one TEM-1, one CTX-M, 20 AmpC-CS, and two intI1 positives. DNA sequencing revealed CTX-M in Pantoea spp. was blaRANH-2, a plasmid-mediated CTX-M related ESBL gene only found in Rahnella spp. Of the 20 AmpC-CS positives, 10 were CMY/MIR/ACT/EC (3 new variants), eight were ACT, one was AZECL, and one was new Pseudomonas-related AmpC family. Screening of AO substances identified 11 SHV, two TEM-1, three CTX-M (one OXY-2, two CTX-M-14/-15), two OXA-9, 13 AmpC-CS and one intI1 positives. The 13 AmpC-CS positives were five CMY/MIR/ACT/EC, three ACT, one MOX-12 variant, and four ADC (one ADC-25 and three new variants). We developed a rapid, easy-to-perform, low-cost, and reliable multiplex PCR system for screening clinically relevant β-lactamases and integrons in Gram-negative bacteria. We showed the prevalence of ESBLs and AmpC β-lactamases among our panel of ampicillin-resistant Gram-negative strains and detection of NDM and OXA carbapenemases.

Cite

CITATION STYLE

APA

Soliman, A. M., Nariya, H., Tanaka, D., Shimamoto, T., & Shimamoto, T. (2023). A Novel Single-Tube Eicosaplex/Octaplex PCR System for the Detection of Extended-Spectrum β-Lactamases, Plasmid-Mediated AmpC β-Lactamases, and Integrons in Gram-Negative Bacteria. Antibiotics, 12(1). https://doi.org/10.3390/antibiotics12010090

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free