Calcium Wave Propagation in Pancreatic Acinar Cells

  • Straub S
  • Giovannucci D
  • Yule D
N/ACitations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

In pancreatic acinar cells, inositol 1,4,5-trisphosphate (InsP3)–dependent cytosolic calcium ([Ca2+]i) increases resulting from agonist stimulation are initiated in an apical “trigger zone,” where the vast majority of InsP3 receptors (InsP3R) are localized. At threshold stimulation, [Ca2+]i signals are confined to this region, whereas at concentrations of agonists that optimally evoke secretion, a global Ca2+ wave results. Simple diffusion of Ca2+ from the trigger zone is unlikely to account for a global [Ca2+]i elevation. Furthermore, mitochondrial import has been reported to limit Ca2+ diffusion from the trigger zone. As such, there is no consensus as to how local [Ca2+]i signals become global responses. This study therefore investigated the mechanism responsible for these events. Agonist-evoked [Ca2+]i oscillations were converted to sustained [Ca2+]i increases after inhibition of mitochondrial Ca2+ import. These [Ca2+]i increases were dependent on Ca2+ release from the endoplasmic reticulum and were blocked by 100 μM ryanodine. Similarly, “uncaging” of physiological [Ca2+]i levels in whole-cell patch-clamped cells resulted in rapid activation of a Ca2+-activated current, the recovery of which was prolonged by inhibition of mitochondrial import. This effect was also abolished by ryanodine receptor (RyR) blockade. Photolysis of d-myo InsP3 P4(5)-1-(2-nitrophenyl)-ethyl ester (caged InsP3) produced either apically localized or global [Ca2+]i increases in a dose-dependent manner, as visualized by digital imaging. Mitochondrial inhibition permitted apically localized increases to propagate throughout the cell as a wave, but this propagation was inhibited by ryanodine and was not seen for minimal control responses resembling [Ca2+]i puffs. Global [Ca2+]i rises initiated by InsP3 were also reduced by ryanodine, limiting the increase to a region slightly larger than the trigger zone. These data suggest that, while Ca2+ release is initially triggered through InsP3R, release by RyRs is the dominant mechanism for propagating global waves. In addition, mitochondrial Ca2+ import controls the spread of Ca2+ throughout acinar cells by modulating RyR activation.

Cite

CITATION STYLE

APA

Straub, S. V., Giovannucci, D. R., & Yule, D. I. (2000). Calcium Wave Propagation in Pancreatic Acinar Cells. The Journal of General Physiology, 116(4), 547–560. https://doi.org/10.1085/jgp.116.4.547

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free