Novel functionality of lithium-impregnated titania as nanocatalyst

1Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The present work incorporates the synthesis of a multifunctional catalyst for the transesterification of waste cooking oil (WCO) to biodiesel and recovery of rare earth elements (REEs). For this purpose, TiO2 nanoparticles and TiO2 doped with lithium ions were prepared. The influence of lithium ions on the catalytic performance of TiO2 was attained by impregnation of the different molar ratios of lithium hydroxide to bare TiO2 . Then each catalyst was screened for catalytic conversion of WCO to fatty acid methyl ester (FAME) and also for REEs recovery. All synthesized materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) analysis, and Hammett indicator for the basicity test. The obtained biodiesel was characterized by gas chromatography with mass spectrometry (GC-MS),1 H, and13 C nuclear magnetic resonance (NMR). Moreover, the physical parameters of the synthesized biodiesel were also determined. The REEs recovery efficiency of synthesized nanomaterials was investigated, and the percentage of REEs removal was determined by inductively-coupled plasma optical emission spectroscopy (ICP-OES).

Cite

CITATION STYLE

APA

Ambat, I., Srivastava, V., Haapaniemi, E., & Sillanpää, M. (2019). Novel functionality of lithium-impregnated titania as nanocatalyst. Catalysts, 9(11). https://doi.org/10.3390/catal9110943

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free