Mass spectrometry and machine learning in the identification of COVID-19 biomarkers

  • Lazari L
  • Santos de Oliveira G
  • Macedo-Da-Silva J
  • et al.
N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Identifying specific diagnostic and prognostic biological markers of COVID-19 can improve disease surveillance and therapeutic opportunities. Mass spectrometry combined with machine and deep learning techniques has been used to identify pathways that could be targeted therapeutically. Moreover, circulating biomarkers have been identified to detect individuals infected with SARS-CoV-2 and at high risk of hospitalization. In this review, we have surveyed studies that have combined mass spectrometry-based omics techniques (proteomics, lipdomics, and metabolomics) and machine learning/deep learning to understand COVID-19 pathogenesis. After a literature search, we show 42 studies that applied reproducible, accurate, and sensitive mass spectrometry-based analytical techniques and machine/deep learning methods for COVID-19 biomarker discovery and validation. We also demonstrate that multiomics data results in classification models with higher performance. Furthermore, we focus on the combination of MALDI-TOF Mass Spectrometry and machine learning as a diagnostic and prognostic tool already present in the clinics. Finally, we reiterate that despite advances in this field, more optimization in the analytical and computational parts, such as sample preparation, data acquisition, and data analysis, will improve biomarkers that can be used to obtain more accurate diagnostic and prognostic tools.

Cite

CITATION STYLE

APA

Lazari, L. C., Santos de Oliveira, G., Macedo-Da-Silva, J., Rosa-Fernandes, L., & Palmisano, G. (2023). Mass spectrometry and machine learning in the identification of COVID-19 biomarkers. Frontiers in Analytical Science, 3. https://doi.org/10.3389/frans.2023.1119438

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free