Temperature and electric field dependences of the mobility of electrons in vertical transport in GaAs/Ga1-yAlyAs barrier structures containing quantum wells

8Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The mobility of electrons in vertical transport in GaAs/Ga1-y AlyAs barrier structures was investigated using geometric magnetoresistance measurements in the dark. The samples studied had GayAlyAs (0 ≤ y ≤ 0:26) linearly graded barriers between the n+-GaAs contacts and the Ga0:74Al0:26As central barrier, which contain Nw (=0, 2, 4, 7 and 10) n-doped GaAs quantum wells. The mobility was determined as functions of (i) temperature (80-290 K) at low applied voltage (0.01-0.1 V) and (ii) applied voltage (0.005-1.6 V) at selected temperatures in the range 3.5-290 K. The experimental results for the temperature dependence of low-field mobility suggest that space-charge scattering is dominant in the samples with Nw whereas ionized impurity scattering is dominant in the samples with The effect of polar optical phonon scattering on the mobility becomes significant in all barrier structures at temperatures above about 200 K. The difference between the measured mobility and the calculated total mobility in the samples with observed above 200 K, is attributed to the reflection of electrons from well-barrier interfaces in the quantum wells and interface roughness scattering. The rapid decrease of mobility with applied voltage at high voltages is explained by intervalley scattering of hot electrons. © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2008.

Cite

CITATION STYLE

APA

Altunöz, S., Çelik, H., & Cankurtaran, M. (2008). Temperature and electric field dependences of the mobility of electrons in vertical transport in GaAs/Ga1-yAlyAs barrier structures containing quantum wells. Central European Journal of Physics, 6(3), 479–490. https://doi.org/10.2478/s11534-008-0067-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free