Cloud Environment is next generation internet based computing system that supplies customiza-ble services to the end user to work or access to the various cloud applications. In order to provide security and decrease the damage of information system, network and computer system it is im-portant to provide intrusion detection system (IDS. Now Cloud environment are under threads from network intrusions, as one of most prevalent and offensive means Denial of Service (DoS) attacks that cause dangerous impact on cloud computing systems. This paper propose Hidden naïve Bayes (HNB) Classifier to handle DoS attacks which is a data mining (DM) model used to relaxes the conditional independence assumption of Naïve Bayes classifier (NB), proposed sys-tem used HNB Classifier supported with discretization and feature selection where select the best feature enhance the performance of the system and reduce consuming time. To evaluate the per-formance of proposal system, KDD 99 CUP and NSL KDD Datasets has been used. The experi-mental results show that the HNB classifier improves the performance of NIDS in terms of accu-racy and detecting DoS attacks, where the accuracy of detect DoS is 100% in three test KDD cup 99 dataset by used only 12 feature that selected by use gain ratio while in NSL KDD Dataset the accuracy of detect DoS attack is 90 % in three Experimental NSL KDD dataset by select 10 fea-ture only.
CITATION STYLE
Mahmood, H. A. (2018). Network Intrusion Detection System (NIDS) in Cloud Environment based on Hidden Naïve Bayes Multiclass Classifier. Al-Mustansiriyah Journal of Science, 28(2), 134–142. https://doi.org/10.23851/mjs.v28i2.508
Mendeley helps you to discover research relevant for your work.