CCN2–MAPK–Id-1 loop feedback amplification is involved in maintaining stemness in oxaliplatin-resistant hepatocellular carcinoma

17Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide. Chemotherapy is an alternative treatment for advanced HCCs, but chemo-resistance prevents cancer therapies from achieving stable and complete responses. Understanding the underlying mechanisms in chemo-resistance is critical to improve the efficacy of HCC. Methods: The expression levels of Id-1 and CCN2 were detected in large cohorts of HCCs, and functional analyses of Id-1 and CCN2 were performed both in vitro and in vivo. cDNA microarrays were performed to evaluate the alterations of expression profiling of HCC cells with overexpression of CCN2. Finally, the role of downstream signaling of MAPK/Id-1 signaling pathway in oxaliplatin resistance were also explored. Results: The increased expression of Id-1 and CCN2 were closely related to oxaliplatin resistance in HCC. Upregulation of CCN2 and Id-1 was independently associated with shorter survival and increased recurrence in HCC patients, and significantly enhanced oxaliplatin resistance and promoted lung metastasis in vivo, whereas knock-down of their expression significantly reversed the chemo-resistance and inhibited HCC cell stemness. cDNA microarrays and PCR revealed that Id-1 and MAPK pathway were the downstream signaling of CCN2. CCN2 significantly enhanced oxaliplatin resistance by activating the MAPK/Id-1 signaling pathway, and Id-1 could upregulate CCN2 in a positive feedback manner. Conclusions: CCN2/MAPK/Id-1 loop feedback amplification is involved in oxaliplatin resistance, and the combination of oxaliplatin with inhibitor of CCN2 or MAPK signaling could provide a promising approach to ameliorating oxaliplatin resistance in HCC.

Cite

CITATION STYLE

APA

Liao, X., Bu, Y., Jiang, S., Chang, F., Jia, F., Xiao, X., … Jia, Q. (2019). CCN2–MAPK–Id-1 loop feedback amplification is involved in maintaining stemness in oxaliplatin-resistant hepatocellular carcinoma. Hepatology International, 13(4), 440–453. https://doi.org/10.1007/s12072-019-09960-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free