Capsaicin-sensitive sensory nerves indirectly modulate motor function of the urinary bladder

5Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Purpose: The urinary bladder (UB) is innervated by both sensory and autonomic nerves. Recent studies have shown that sensory neuropeptides induced contractions in the detrusor muscle. Therefore, in a mouse model, we investigated the presence of interactions between the submucosal sensory nerves and the autonomic nerves that regulate the motor function of the detrusor muscle. Methods: UB samples from male C57BL/6 mice were isolated, cut into strips, and mounted in an organ bath. Dose-response curves to norepinephrine and phenylephrine were studied in UB strips with and without mucosa, and the effects of preincubation with a receptor antagonist and various drugs on relaxation were also studied using tissue bath myography. Results: Phenylephrine-induced relaxation of the UB strips showed concentration-related effects. This relaxation appeared in both mucosa-intact and mucosa-denuded UB strips, and was significantly inhibited by lidocaine, silodosin, and guanethidine (an adrenergic neuronal blocker). Meanwhile, phenylephrine-induced relaxation was inhibited by pretreatment with propranolol and calcitonin gene-related peptide (CGRP)-depletory capsaicin in UB strips with and without mucosa. Conclusions: The present study suggests that phenylephrine activates the a-1A adrenergic receptor (AR) of the sensory nerve, and then activates capsaicin-sensitive sensory nerves to release an unknown substance that facilitates the release of norepinephrine from adrenergic nerves. Subsequently, norepinephrine stimulates ß-ARs in the detrusor muscle in mice, leading to neurogenic relaxation of the UB. Further animal and human studies are required to prove this concept and to validate its clinical usefulness.

Cite

CITATION STYLE

APA

Chang, H. H., Chang, S. J., Hsieh, C. H., Hsu, C. K., & Yang, S. S. D. (2018). Capsaicin-sensitive sensory nerves indirectly modulate motor function of the urinary bladder. International Neurourology Journal, 22(2), 83–89. https://doi.org/10.5213/inj.1836078.039

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free