We demonstrate in this article that the magnetoelectric (ME) mechanism can be exploited to control the spin current emitted in a spin pumping experiment using moderate electric fields. Spin currents were generated at the interface of a ferromagnet/metal bilayer by driving the system to the ferromagnetic resonance condition at X-Band (9.78 GHz) with an incident power of 200 mW. The ME structure, a thin (20 nm) FePt film grown on top of a polished 011-cut single crystal lead magnesium niobate-lead titanate (PMN-PT) slab, was prepared by dc magnetron sputtering. The PMN-PT/FePt was operated in the L-T mode (longitudinal magnetized-transverse polarized). This hybrid composite showed a large ME coefficient of 140 Oe cm/kV, allowing to easily tune the ferromagnetic resonance condition with electric field strengths below 4 kV/cm. A thin layer of Pt (10 nm) was grown on top of the PMN-PT/FePt structure and was used to generate and detect the spin current by taking advantage of its large spin-orbit coupling that produces a measurable signal via the inverse spin-Hall effect. These results proved an alternative way to tune the magnetic field at which the spin current is established and consequently the inverse spin-Hall effect signal, which can promote advances in hybrid spintronic devices.
CITATION STYLE
Vargas, J. M., Gómez, J. E., Avilés-Félix, L., & Butera, A. (2017). Magnetoelectric tuning of the inverse spin-Hall effect. AIP Advances, 7(5). https://doi.org/10.1063/1.4973845
Mendeley helps you to discover research relevant for your work.