Sorting of lysosomal membrane glycoproteins lamp-1 and lamp-2 into vesicles distinct from mannose 6-phosphate receptor/γ-adaptin vesicles at the trans-Golgi network

76Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Newly synthesized lysosomal membrane glycoproteins lamp-1 and lamp-2 are primarily sorted at the trans-Golgi network (TGN) by recognition of a tyrosine-based signal sequence in their cytoplasmic tails. It is presently unclear how this signal is recognized and what type of vesicle transports lamp-1 and lamp-2. Here, we describe a method to generate transport vesicles containing lamp proteins from the TGN in vitro. The method is based on incorporation of radioactive sialic acid in glycoproteins at the TGN by incubation of membranes with tritiated CMP-sialic acid. The generation of vesicles from labeled membranes required ATP and cytosol, and was temperature-dependent and brefeldin A-sensitive. Analysis on Nycodenz gradients revealed that lamp-vesicles were distinct from vesicles containing γ-adaptin and mannose 6-phosphate receptor (MPR). Moreover, both these types of vesicles migrated differently than vesicles containing proteins destined for the plasma membrane. The conclusion that lamps and MPRs are sorted into different vesicles was further strengthened by the finding that whereas wortmannin both in vitro and in vivo inhibited the production of γ- adaptin/MPR-containing vesicles, this drug had no effect on the generation of lamp-vesicles and on the sorting of lamps. The results indicate that membrane proteins containing tyrosine-based motifs for sorting at the TGN are segregated from clathrin-coated vesicles containing MPRs.

Cite

CITATION STYLE

APA

Karlsson, K., & Carlsson, S. R. (1998). Sorting of lysosomal membrane glycoproteins lamp-1 and lamp-2 into vesicles distinct from mannose 6-phosphate receptor/γ-adaptin vesicles at the trans-Golgi network. Journal of Biological Chemistry, 273(30), 18966–18973. https://doi.org/10.1074/jbc.273.30.18966

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free