A microbiome engineering framework to evaluate rhizobial symbionts of legumes

5Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Background: For well over a century, rhizobia have been recognized as effective biofertilizer options for legume crops. This has led to the widespread use of rhizobial inoculants in agricultural systems, but a recurring issue has emerged: applied rhizobia struggle to provide growth benefits to legume crops. This has largely been attributed to the presence of soil rhizobia and has been termed the ‘rhizobial competition problem.’ Scope: Microbiome engineering has emerged as a methodology to circumvent the rhizobial competition problem by creating legume microbiomes that do not require exogenous rhizobia. However, we highlight an alternative implementation of microbiome engineering that focuses on untangling the complexities of the symbiosis that contribute to the rhizobial competition problem. We outline three approaches that use different starting inocula to test hypotheses to overcome the rhizobial competition problem. Conclusions: The approaches we suggest are targeted at various stages of the legume-rhizobium symbiosis and will help us uncover underlying molecular mechanisms that contribute to the rhizobial competition problem. We conclude with an integrative perspective of these different approaches and suggest a path forward for future research on legumes and their complex microbiome.

Cite

CITATION STYLE

APA

Quides, K. W., & Atamian, H. S. (2021). A microbiome engineering framework to evaluate rhizobial symbionts of legumes. Plant and Soil, 463(1–2), 631–642. https://doi.org/10.1007/s11104-021-04892-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free