Speeding up Discrete Event Simulations (DESs) is a broad research field. Promising Parallel Discrete Event Simulation (PDES) approaches with optimistic and conservative synchronisation schemes have emerged throughout the years. However, in the area of real-time simulation, PDESs are rarely considered. This is caused by the complex problem of fitting parallel executed DES models to a real-time clock. Hence, this paper gives an extensive review of existing conservative and optimistic synchronisation schemes for PDESs. It introduces a metric to compare their real-time capabilities to determine whether they can be used for soft or firm real-time simulation. Examples are given on how to apply this metric to evaluate PDESs using synthetic and real-world examples. The results of the investigation reveal that no final answer can be given if PDESs can be used for soft or firm real-time simulation as they are. However, boundary conditions were defined, which allow a use-case specific evaluation of the real-time capabilities of a certain parallel executed DES. Using this in-depth knowledge and can lead to predictability of the real-time behaviour of a simulation run.
CITATION STYLE
Obermaier, C., Riebl, R., Al-Bayatti, A. H., Khan, S., & Facchi, C. (2021). Measuring the realtime capability of parallel-discrete-event-simulations. Electronics (Switzerland), 10(6), 1–23. https://doi.org/10.3390/electronics10060636
Mendeley helps you to discover research relevant for your work.