Li7La3Zr2O12 (LLZ) has great potential as a solid electrolyte for co-fired all-solid-state Li-ion secondary batteries. However, to realise a solid-state battery using LLZ, the sintering temperature of LLZ should be reduced to one that can suppress the formation of a high-resistance reaction layer at the interface between LLZ and the electrode. In this study, we demonstrate an effective method for reducing the sintering temperature of Li6La3ZrTaO12 by combining partial Bi-substitution for Ta and precise control of the compositional deviation. The intentional tuning of the La deficiency in Li6La3ZrTa0.8Bi0.2O12 (LLZTB0.2) promoted the formation of a liquid phase based on Li2OBi2O3 at the grain boundary, resulting in its densification at 775 °C. Furthermore, we fabricated a co-fired all-solid-state half-cell based on an LLZTB0.2 electrolyte attached to a LiCoO2 + LLZTB0.2 composite electrode and a half-cell operated at 60 °C. From these results, it was found that the proposed concept is effective in reducing the sintering temperature of LLZ and is applicable for co-firing an all-solid-state battery.
CITATION STYLE
Watanabe, K., Tashiro, A., Ichinose, Y., Takeno, S., Suematsu, K., Mitsuishi, K., & Shimanoe, K. (2022). Lowering the sintering temperature of Li7La3Zr2O12 electrolyte for co-fired all-solid-state batteries via partial Bi substitution and precise control of compositional deviation. Journal of the Ceramic Society of Japan, 130(7), 416–423. https://doi.org/10.2109/JCERSJ2.21183
Mendeley helps you to discover research relevant for your work.