Constructing an artificial solid electrolyte interphase (SEI) on lithium metal electrodes is a promising approach to address the rampant growth of dangerous lithium morphologies (dendritic and dead Li0) and low Coulombic efficiency that plague development of lithium metal batteries, but how Li+ transport behavior in the SEI is coupled with mechanical properties remains unknown. We demonstrate here a facile and scalable solution-processed approach to form a Li3N-rich SEI with a phase-pure crystalline structure that minimizes the diffusion energy barrier of Li+ across the SEI. Compared with a polycrystalline Li3N SEI obtained from conventional practice, the phase-pure/single crystalline Li3N-rich SEI constitutes an interphase of high mechanical strength and low Li+ diffusion barrier. We elucidate the correlation among Li+ transference number, diffusion behavior, concentration gradient, and the stability of the lithium metal electrode by integrating phase field simulations with experiments. We demonstrate improved reversibility and charge/discharge cycling behaviors for both symmetric cells and full lithium-metal batteries constructed with this Li3N-rich SEI. These studies may cast new insight into the design and engineering of an ideal artificial SEI for stable and high-performance lithium metal batteries.
CITATION STYLE
Pokharel, J., Cresce, A., Pant, B., Yang, M. Y., Gurung, A., He, W., … Zhou, Y. (2024). Manipulating the diffusion energy barrier at the lithium metal electrolyte interface for dendrite-free long-life batteries. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-47521-z
Mendeley helps you to discover research relevant for your work.