This paper presents a comprehensive techno-economic analysis of different energy storage systems (ESSs) in providing low-voltage ride-through (LVRT) support for power electronics-based electrolyzer systems. A framework for analyzing the performance of a grid-integrated electrolyzer-ESS system is developed, taking into account realistic scenarios and accurate models. The system components consist of a 500 kW alkaline electrolyzer module integrated with a medium-voltage grid and three different commercially available ESSs based on Li-ion battery, Li-ion capacitor, and supercapacitor technology, respectively. The performance of these ESSs is extensively studied for three LVRT profiles, with a primary focus on the upcoming Danish grid code. In order to perform simulation studies, the system is implemented on the MATLAB®/Simulink®-PLECS® platform. The results demonstrate that all three energy storage technologies are capable of supporting the electrolyzer systems during low-voltage abnormalities in the distribution grid. The study also reveals that the supercapacitor-based technology seems to be more appropriate, from a techno-economic perspective, for fault ride-through (FRT) compliance.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Saha, P., Zhao, W., Stroe, D. I., Iov, F., & Munk-Nielsen, S. (2023). Enabling LVRT Compliance of Electrolyzer Systems Using Energy Storage Technologies. Batteries, 9(11). https://doi.org/10.3390/batteries9110527