Methanol on anatase TiO2 (101): Mechanistic insights into photocatalysis

100Citations
Citations of this article
117Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The photoactivity of methanol adsorbed on the anatase TiO2 (101) surface was studied by a combination of scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), X-ray photoemission spectroscopy (XPS), and density functional theory (DFT) calculations. Isolated methanol molecules adsorbed at the anatase (101) surface show a negligible photoactivity. Two ways of methanol activation were found. First, methoxy groups formed by reaction of methanol with coadsorbed O2 molecules or terminal OH groups are photoactive, and they turn into formaldehyde upon UV illumination. The methoxy species show an unusual C 1s core-level shift of 1.4 eV compared to methanol; their chemical assignment was verified by DFT calculations with inclusion of final-state effects. The second way of methanol activation opens at methanol coverages above 0.5 monolayer (ML), and methyl formate is produced in this reaction pathway. The adsorption of methanol in the coverage regime from 0 to 2 ML is described in detail; it is key for understanding the photocatalytic behavior at high coverages. There, a hydrogen-bonding network is established in the adsorbed methanol layer, and consequently, methanol dissociation becomes energetically more favorable. DFT calculations show that dissociation of the methanol molecule is always the key requirement for hole transfer from the substrate to the adsorbed methanol. We show that the hydrogen-bonding network established in the methanol layer dramatically changes the kinetics of proton transfer during the photoreaction.

Cite

CITATION STYLE

APA

Setvin, M., Shi, X., Hulva, J., Simschitz, T., Parkinson, G. S., Schmid, M., … Diebold, U. (2017). Methanol on anatase TiO2 (101): Mechanistic insights into photocatalysis. ACS Catalysis, 7(10), 7081–7091. https://doi.org/10.1021/acscatal.7b02003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free