Site-Specific Carboxypeptidase B1 Tyrosine Nitration and Pathophysiological Implications following Its Physical Association with Nitric Oxide Synthase-3 in Experimental Sepsis

  • Chatterjee S
  • Lardinois O
  • Bonini M
  • et al.
28Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

LPS-induced sepsis results in oxidative modification and inactivation of carboxypeptidase B1 (CPB1). In this study, immunoprecipitated CPB1 was probed for tyrosine nitration using monoclonal nitrotyrosine-specific Abs in a murine model of LPS-induced sepsis. Tyrosine nitration of CPB1 was significantly reduced in the presence of NO synthase (NOS) inhibitors and the xanthine oxidase (XO) inhibitor allopurinol and in NOS-3 knockout (KO) mice. CPB1 tyrosine nitration and loss of activity by the concerted action of NOS-3 and XO were also confirmed in vitro using both the NO donor 3-morpholinosydnonimine and peroxynitrite. Liquid chromatography/tandem mass spectrometry data indicated five sites of tyrosine nitration in vitro including Tyr248, the tyrosine at the catalytic site. The site- and protein-specific nitration of CPB1 and the possible high nitration yield to inactivate it were elucidated by confocal microscopy. The studies indicated that CPB1 colocalized with NOS-3 in the cytosol of sinus-lining cells in the red pulp of the spleen. Further analysis of CPB1-immunoprecipitated samples indicated immunoreactivity to a monoclonal NOS-3 Ab, suggesting protein complex formation with CPB1. XO and NOS inhibitors and NOS-3 KO mice injected with LPS had decreased levels of C5a in spleens of septic mice, indicating peroxynitrite as a possible cause for CPB1 functional alteration. Thus, CPB1 colocalization, coupling, and proximity to NOS-3 in the sinus-lining cells of spleen red pulp could explain the site-specific tyrosine nitration and inactivation of CPB1. These results open up new avenues for the investigation of several enzymes involved in inflammation and their site-specific oxidative modifications by protein-protein interactions as well as their role in sepsis.

Cite

CITATION STYLE

APA

Chatterjee, S., Lardinois, O., Bonini, M. G., Bhattacharjee, S., Stadler, K., Corbett, J., … Mason, R. P. (2009). Site-Specific Carboxypeptidase B1 Tyrosine Nitration and Pathophysiological Implications following Its Physical Association with Nitric Oxide Synthase-3 in Experimental Sepsis. The Journal of Immunology, 183(6), 4055–4066. https://doi.org/10.4049/jimmunol.0900593

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free