1-page and 2-page drawings with bounded number of crossings per edge

Citations of this article
Mendeley users who have this article in their library.
Get full text


A 2-page drawing of a graph is such that the vertices are drawn as points along a line and each edge is a circular arc in one of the two half-planes defined by this line. If all edges are in the same half-plane, the drawing is called a 1-page drawing. We want to compute 1-page and 2-page drawings of planar graphs such that the number of crossings per edge does not depend on the number of the vertices. We show that for any constant k, there exist planar graphs that require more than k crossings per edge in either a 1-page or a 2-page drawing. We then prove that if the vertex degree is bounded by Δ, every planar 3-tree has a 2-page drawing with a number of crossings per edge that only depends on Δ. Finally, we show a similar result for 1-page drawings of partial 2-trees.




Binucci, C., Di Giacomo, E., Hossain, M. I., & Liotta, G. (2016). 1-page and 2-page drawings with bounded number of crossings per edge. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9538, pp. 38–51). Springer Verlag. https://doi.org/10.1007/978-3-319-29516-9_4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free