A tutorial on automatic post-stratification and weighting in conventional and regression-based norming of psychometric tests

2Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Norm scores are an essential source of information in individual diagnostics. Given the scope of the decisions this information may entail, establishing high-quality, representative norms is of tremendous importance in test construction. Representativeness is difficult to establish, though, especially with limited resources and when multiple stratification variables and their joint probabilities come into play. Sample stratification requires knowing which stratum an individual belongs to prior to data collection, but the required variables for the individual’s classification, such as socio-economic status or demographic characteristics, are often collected within the survey or test data. Therefore, post-stratification techniques, like iterative proportional fitting (= raking), aim at simulating representativeness of normative samples and can thus enhance the overall quality of the norm scores. This tutorial describes the application of raking to normative samples, the calculation of weights, the application of these weights in percentile estimation, and the retrieval of continuous, regression-based norm models with the cNORM package on the R platform. We demonstrate this procedure using a large, non-representative dataset of vocabulary development in childhood and adolescence (N = 4542), using sex and ethnical background as stratification variables.

Cite

CITATION STYLE

APA

Gary, S., Lenhard, W., Lenhard, A., & Herzberg, D. (2024). A tutorial on automatic post-stratification and weighting in conventional and regression-based norming of psychometric tests. Behavior Research Methods, 56(5), 4632–4642. https://doi.org/10.3758/s13428-023-02207-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free