Background: Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and body mass, and has been implicated in endoplasmic reticulum (ER) stress. Herein, we assess the role of PTP1B in ER stress in brown adipocytes, which are key regulators of thermogenesis and metabolic response. Methodology/Principal Findings: To determine the role of PTP1B in ER stress, we utilized brown adipose tissue (BAT) from mice with adipose-specific PTP1B deletion, and brown adipocytes deficient in PTP1B and reconstituted with PTP1B wild type (WT) or the substrate-trapping PTP1B D181A (D/A) mutant. PTP1B deficiency led to upregulation of PERK-eIF2α phosphorylation and IRE1α-XBP1 sub-arms of the unfolded protein response. In addition, PTP1B deficiency sensitized differentiated brown adipocytes to chemical-induced ER stress. Moreover, PERK activation and tyrosine phosphorylation were increased in BAT and adipocytes lacking PTP1B. Increased PERK activity resulted in the induction of eIF2α phosphorylation at Ser51 and better translatability of ATF4 mRNA in response to ER stress. At the molecular level, we demonstrate direct interaction between PTP1B and PERK and identify PERK Tyr615 as a mediator of this association. Conclusions: Collectively, the data demonstrate that PTP1B is a physiologically-relevant modulator of ER stress in brown adipocytes and that PTP1B deficiency modulates PERK-eIF2α phosphorylation and protein synthesis. © 2012 Bettaieb et al.
CITATION STYLE
Bettaieb, A., Matsuo, K., Matsuo, I., Wang, S., Melhem, R., Koromilas, A. E., & Haj, F. G. (2012). Protein tyrosine phosphatase 1B deficiency potentiates PERK/eiF2α signaling in brown adipocytes. PLoS ONE, 7(4). https://doi.org/10.1371/journal.pone.0034412
Mendeley helps you to discover research relevant for your work.