Motivation: Frameshifting (FS) indels and nonsense (NS) variants disrupt the protein-coding sequence downstream of the mutation site by changing the reading frame or introducing a premature termination codon, respectively. Despite such drastic changes to the protein sequence, FS indels and NS variants have been discovered in healthy individuals. How to discriminate disease-causing from neutral FS indels and NS variants is an understudied problem. Results: We have built a machine learning method called DDIG-in (FS) based on real human genetic variations from the Human Gene Mutation Database (inherited disease-causing) and the 1000 Genomes Project (GP) (putatively neutral). The method incorporates both sequence and predicted structural features and yields a robust performance by 10-fold cross-validation and independent tests on both FS indels and NS variants. We showed that human-derived NS variants and FS indels derived from animal orthologs can be effectively employed for independent testing of our method trained on human-derived FS indels. DDIG-in (FS) achieves a Matthews correlation coefficient (MCC) of 0.59, a sensitivity of 86%, and a specificity of 72% for FS indels. Application of DDIG-in (FS) to NS variants yields essentially the same performance (MCC of 0.43) as a method that was specifically trained for NS variants. DDIG-in (FS) was shown to make a significant improvement over existing techniques.
CITATION STYLE
Folkman, L., Yang, Y., Li, Z., Stantic, B., Sattar, A., Mort, M., … Zhou, Y. (2015). DDIG-in: Detecting disease-causing genetic variations due to frameshifting indels and nonsense mutations employing sequence and structural properties at nucleotide and protein levels. Bioinformatics, 31(10), 1599–1606. https://doi.org/10.1093/bioinformatics/btu862
Mendeley helps you to discover research relevant for your work.