Biomass waste-derived porous carbons (BWDPCs) are a class of complex materials that are widely used in sustainable waste management and carbon capture. However, their diverse textural properties, the presence of various functional groups, and the varied temperatures and pressures to which they are subjected during CO2adsorption make it challenging to understand the underlying mechanism of CO2adsorption. Here, we compiled a data set including 527 data points collected from peer-reviewed publications and applied machine learning to systematically map CO2adsorption as a function of the textural and compositional properties of BWDPCs and adsorption parameters. Various tree-based models were devised, where the gradient boosting decision trees (GBDTs) had the best predictive performance withR2of 0.98 and 0.84 on the training and test data, respectively. Further, the BWDPCs in the compiled data set were classified into regular porous carbons (RPCs) and heteroatom-doped porous carbons (HDPCs), where again the GBDT model hadR2of 0.99 and 0.98 on the training and 0.86 and 0.79 on the test data for the RPCs and HDPCs, respectively. Feature importance revealed the significance of adsorption parameters, textural properties, and compositional properties in the order of precedence for BWDPC-based CO2adsorption, effectively guiding the synthesis of porous carbons for CO2adsorption applications.
CITATION STYLE
Yuan, X., Suvarna, M., Low, S., Dissanayake, P. D., Lee, K. B., Li, J., … Ok, Y. S. (2021). Applied Machine Learning for Prediction of CO2Adsorption on Biomass Waste-Derived Porous Carbons. Environmental Science and Technology, 55(17), 11925–11936. https://doi.org/10.1021/acs.est.1c01849
Mendeley helps you to discover research relevant for your work.