Protein encapsulation in polymeric microneedles by photolithography

41Citations
Citations of this article
88Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Background: Recent interest in biocompatible polymeric microneedles for the delivery of biomolecules has propelled considerable interest in fabrication of microneedles. It is important that the fabrication process is feasible for drug encapsulation and compatible with the stability of the drug in question. Moreover, drug encapsulation may offer the advantage of higher drug loading compared with other technologies, such as drug coating. Methods and results: In this study, we encapsulated a model protein drug, namely, bovine serum albumin, in polymeric microneedles by photolithography. Drug distribution within the microneedle array was found to be uniform. The encapsulated protein retained its primary, secondary, and tertiary structural characteristics. In vitro release of the encapsulated protein showed that almost all of the drug was released into phosphate buffered saline within 6 hours. The in vitro permeation profile of encapsulated bovine serum albumin through rat skin was also tested and shown to resemble the in vitro release profile, with an initial release burst followed by a slow release phase. The cytotoxicity of the microneedles without bovine serum albumin was tested in three different cell lines. High cell viabilities were observed, demonstrating the innocuous nature of the microneedles. Conclusion: The microneedle array can potentially serve as a useful drug carrier for proteins, peptides, and vaccines. © 2012 Ragab et al, publisher and licensee Dove Medical Press Ltd.

Cite

CITATION STYLE

APA

Kochhar, J. S., Zou, S., Chan, S. Y., & Kang, L. (2012). Protein encapsulation in polymeric microneedles by photolithography. International Journal of Nanomedicine, 7, 3143–3154. https://doi.org/10.2147/IJN.S32000

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free