Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: Evidence of rapid polarity-reversing metaplasticity

302Citations
Citations of this article
244Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Metaplasticity refers to the activity-dependent modification of the ability of synapses to undergo subsequent potentiation or depression, and is thought to maintain homeostasis of cortical excitability. Continuous magnetic theta-burst stimulation (cTBS; 50 Hz-bursts of 3 subthreshold magnetic stimuli repeated at 5 Hz) is a novel repetitive magnetic stimulation protocol used to model changes of synaptic efficacy in human motor cortex. Here we examined the influence of prior activity on the effects induced by cTBS. Without prior voluntary motor activation, application of cTBS for a duration of 20 s (cTBS300) facilitated subsequently evoked motor potentials (MEP) recorded from APB muscle. In contrast, MEP-size was depressed, when cTBS300 was preceded by voluntary activity of sufficient duration. Remarkably, even without prior voluntary activation, depression of MEP-size was induced when cTBS was extended over 40 s. These findings provide in vivo evidence for extremely rapid metaplasticity reversing potentiation of corticospinal excitability to depression. Polarity-reversing metaplasticity adds considerable complexity to the brain's response toward new experiences. Conditional dependence of cTBS-induced depression of corticospinal excitability on prior neuronal activation suggests that the TBS-model of synaptic plasticity may be closer to synaptic mechanisms than previously thought. © The Author 2007. Published by Oxford University Press. All rights reserved.

Cite

CITATION STYLE

APA

Gentner, R., Wankerl, K., Reinsberger, C., Zeller, D., & Classen, J. (2008). Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: Evidence of rapid polarity-reversing metaplasticity. Cerebral Cortex, 18(9), 2046–2053. https://doi.org/10.1093/cercor/bhm239

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free