Small molecule DFPM derivative-activated plant resistance protein signaling in roots is unaffected by EDS1 subcellular targeting signal and chemical genetic isolation of VICTR R-protein mutants

5Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

The small molecule DFPM ([5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione) was recently shown to trigger signal transduction via early effector-triggered immunity signaling genes including EDS1 and PAD4 in Arabidopsis thaliana accession Col-0. Chemical genetic analyses of A. thaliana natural variants identified the plant Resistance protein-like Toll/Interleukin1 Receptor (TIR)-Nucleotide Binding (NB)-Leucine-Rich Repeat (LRR) protein VICTR as required for DFPM-mediated root growth arrest. Here a chemical genetic screen for mutants which disrupt DFPM-mediated root growth arrest in the Col-0 accession identified new mutant alleles of the TIR-NB-LRR gene VICTR. One allele, victr-6, carries a Gly216-to-Asp mutation in the Walker A domain supporting an important function of the VICTR nucleotide binding domain in DFPM responses consistent with VICTR acting as a canonical Resistance protein. The essential nucleo-cytoplasmic regulator of TIR-NBLRR-mediated effector-triggered immunity, EDS1, was reported to have both nuclear and cytoplasmic actions in pathogen resistance. DFPM was used to investigate the requirements for subcellular EDS1 localization in DFPM-mediated root growth arrest. EDS1-YFP fusions engineered to localize mainly in the cytoplasm or the nucleus by tagging with a nuclear export signal (NES) or a nuclear localization signal (NLS), respectively, were tested. We found that wild-type EDS1-YFP and both the NES and NLS-tagged EDS1 variants were induced by DFPM treatments and fully complemented eds1 mutant plants in root responses to DFPM, suggesting that enrichment of EDS1 in either compartment could confer DFPMPLOS mediated root growth arrest. We further found that a light and O2-dependent modification of DFPM is necessary to mediate DFPM signaling in roots. Chemical analyses including Liquid Chromatography-Mass Spectrometry and High-Resolution Atmospheric Pressure Chemical Ionization Mass Spectrometry identified a DFPM modification product that is likely responsible for bioactivity mediating root growth arrest. We propose a chemical structure of this product and a possible reaction mechanism for DFPM modification.

Cite

CITATION STYLE

APA

Kunz, H. H., Park, J., Mevers, E., García, A. V., Highhouse, S., Gerwick, W. H., … Schroeder, J. I. (2016). Small molecule DFPM derivative-activated plant resistance protein signaling in roots is unaffected by EDS1 subcellular targeting signal and chemical genetic isolation of VICTR R-protein mutants. PLoS ONE, 11(5). https://doi.org/10.1371/journal.pone.0155937

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free