Single-tree influence of Tectona grandis Linn. f. on plant distribution and soil characteristics in a planted forest

  • Ikhajiagbe B
  • Ogwu M
  • Lawrence A
N/ACitations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Little is known about the single-tree influence of Tectona grandis Linn. f. on plant distribution and soil characteristics in Benin City, Nigeria. We investigated the possible single-tree effect of T. grandis on understory plants in an 8-year-old teak plantation at the Moist Forest Research Station. An area of 36.57 m by 60.96 m was marked out and divided into 15 equal-sized subplots containing 10 trees per subplot. Marked distances from the base of a randomly selected tree per subplot were made (0–0.5 m, 0.5–1.0 m and 1.0–1.5 m). Single-tree influence of T. grandis was observed in the soil total organic carbon, total nitrogen and soluble phosphorus, where concentrations were higher with 1.5-m radius from the tree than beyond. Moreover, the pH of the topsoil within 1.5 m from the base of the tree was lower (pH 4.4) than beyond 1.5 m from the base of the tree (pH 5.4). Species-specific single-tree effect was also observed on the understory plant distribution likely due to diverse ecophysiological interactions. Within 1.5 m from the tree, plant species abundance, especially of Sida garckeana, Reisantia indica, Momordica charantia and Tridax procumbens were negatively affected. However, the distribution of Eleusine indica around the tree was not negatively influenced. Plant abundance was generally suppressed in Cynodon dactylon, Axonopus compressus, Andropogon gayanus, Commelina diffusa and Euphorbia hirta. Generally, there were more plant species beyond the canopy fringes than within the canopy, indicating inhibitory single-tree effects. Not all plant species in close proximity to T. grandis are affected. This is important considering that plant-plant associations affect the quality of forest soils. Generally, more plant species were recorded outside the 1.5-m demarcation than within, an increase in soil organic matter may further enhance such plant species abundance. The impact of T. grandis in forest soil quality is possibly a factor of the outcome of its association with neighbouring plant species. Diverse mechanisms at play may be responsible for the observed effects on soil chemistry. However, a reduction in the soil organic matter and variations in other environmental factors also contributed to observed single-tree effect.

Cite

CITATION STYLE

APA

Ikhajiagbe, B., Ogwu, M. C., & Lawrence, A. E. (2020). Single-tree influence of Tectona grandis Linn. f. on plant distribution and soil characteristics in a planted forest. Bulletin of the National Research Centre, 44(1). https://doi.org/10.1186/s42269-020-00285-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free