Purpose: We propose a method to acquire B1 distribution plots by encoding in B1 instead of image space. Using this method, B1 data is acquired in a different way from traditional spatial B1 mapping, and allows for quick measurement of high dynamic range B1 data. Methods: To encode in B1, we acquire multiple projections of a slice, each along the same direction, but using a different phase sensitivity to B1. Using a convex optimization formulation, we reconstruct histograms of the B1 distribution estimates of the slice. Results: We verify in vivo B1 distribution measurements by comparing measured distributions to distributions calculated from reference spatial B1 maps using the Earth Mover's Distance. Phantom measurements using a surface coil show that for increased spatial B1 variations, measured B1 distributions using the proposed method more accurately estimate the distribution than a low-resolution spatial B1 map, resulting in a 37% Earth Mover's Distance decrease while using fewer measurements. Conclusion: We propose and validate the performance of a method to acquire B1 distribution information directly without acquiring a spatial B1 map. The method may provide faster estimates of a B1 field for applications that do not require spatial B1 localization, such as the transmit gain calibration of the scanner, particularly for high dynamic B1 ranges. Magn Reson Med 77:229–236, 2017. © 2016 Wiley Periodicals, Inc.
CITATION STYLE
Jordanova, K. V., Nishimura, D. G., & Kerr, A. B. (2017). Measuring B1 distributions by B1 phase encoding. Magnetic Resonance in Medicine, 77(1), 229–236. https://doi.org/10.1002/mrm.26114
Mendeley helps you to discover research relevant for your work.