Choroideremia, an X-linked form of retinal degeneration, results from defects in the Rab escort protein-1 (REP-1) gene. REP-1 and REP-2 assist in the attachment of geranylgeranyl groups to Rab GTPases, a modification essential for their action as molecular switches regulating intracellular vesicular transport. If Rabs that depend preferentially on REP-1 for prenylation exist, they will accumulate unprenylated in choroideremia cells. Using recombinant Rab geranylgeranyl transferase and REPs to label unprenylated cytosolic proteins, we identified one unprenylated protein in choroideremia lymphoblasts that was prenylated in vitro more efficiently by REP-1 than by REP-2. This protein was purified and identified as Ram (renamed Rab27), a previously cloned Rab of unknown function. Immunohistochemistry of rat retina showed that Ram/Rub27 is expressed in the pigment epithelium and choriocapillaris, the two retinal cell layers that degenerate earliest in choroideremia. These results raise the possibility that the retinal degeneration in choroideremia results from the deficient geranylgeranylation of Ram/Rab27 or a closely related protein.
CITATION STYLE
Seabra, M. C., Ho, Y. K., & Anant, J. S. (1995). Deficient geranylgeranylation of Ram/Rab27 in choroideremia. Journal of Biological Chemistry, 270(41), 24420–24427. https://doi.org/10.1074/jbc.270.41.24420
Mendeley helps you to discover research relevant for your work.