Synthetic events for flood risk calculation by using a nested Copula structure

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Risk analysis requires considering the entire frequency domain of flood consequences. Synthetic events were generated for the entire river system of the Scheldt estuary. This estuary contains multiple navigable waterways and is situated in Belgium and the Netherlands. Extreme water levels are influenced by rainfall-runoff discharges, tiding, storm surges, and wind speed and direction. For the generation of hydraulic boundary conditions for flood risk assessment, these influences and their mutual dependencies and correlations are taken into account by means of a nested extreme value copula structure. The variation in time is taken into account by standardized profiles, computed by normalizing all recorded extreme events and fitting a probability distribution to the variation of the standardized events, yielding 5 profile classes through another stratification. Eventually this resulted in a total of 1920 sets of synthetic events. All events were run through the hydrodynamic model of the river system. The frequency distribution of the resulting water levels are calculated by accumulation of the corresponding probabilities of occurrence of the synthetic events at each location. The methodology has the advantage that it determines a statistical distribution of consequences, rather than assigning frequencies to hydrodynamic boundary conditions.

Cite

CITATION STYLE

APA

Franken, T., Blanckaert, J., & Leyssen, G. (2016). Synthetic events for flood risk calculation by using a nested Copula structure. In E3S Web of Conferences (Vol. 7). EDP Sciences. https://doi.org/10.1051/e3sconf/20160701005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free