ABSTRACT Globular clusters (GCs) are expected to be breeding grounds for the formation of single or binary intermediate-mass black holes (IMBHs) of ≳100 M⊙, but a clear signature of their existence is still missing. In this context, we study the process of dynamical capture of a millisecond pulsar (MSP) by a single or binary IMBH, simulating various types of single-binary and binary-binary encounters. It is found that [IMBH, MSP] binaries form over cosmic time in a cluster, at rates ≲10-11 yr-1, via encounters of wide-orbit binary MSPs off the single IMBH, and at a lower pace, via interactions of (binary or single) MSPs with the IMBH orbited by a typical cluster star. The formation of an [IMBH, MSP] system is strongly inhibited if the IMBH is orbited by a stellar mass black hole (BH): in this case, the only viable path is through the formation of a rare stable hierarchical triplet with the MSP orbiting exterior to the [IMBH, BH] binary. The [IMBH, MSP] binaries that form are relatively short-lived, ≲10 8-109 yr, since their orbits decay via emission of gravitational waves. The detection of an [IMBH, MSP] system has a low probability of occurrence, when inferred from the current sample of MSPs in GCs. If next-generation radio telescopes, like Square Kilometre Array (SKA), will detect an order of magnitude larger population of MSP in GCs, at least one [IMBH, MSP] is expected. Therefore, a complete search for low-luminosity MSPs in the GCs of the Milky Way with SKA will have the potential of testing the hypothesis that IMBHs of the order of 100 M⊙ are commonly hosted in GCs. The discovery will unambiguously prove that BHs exist in the still uncharted interval of masses around ≳100 M⊙. © 2007 The Authors. Journal compilation © 2007 RAS.
CITATION STYLE
Devecchi, B., Colpi, M., Mapelli, M., & Possenti, A. (2007). Millisecond pulsars around intermediate-mass black holes in globular clusters. Monthly Notices of the Royal Astronomical Society, 380(2), 691–702. https://doi.org/10.1111/j.1365-2966.2007.12160.x
Mendeley helps you to discover research relevant for your work.