Biodegradable mulches (BDMs) provide a unique advantage to growers in that they can be tilled into the soil after use, eliminating disposal costs that include time, labor, and equipment needs. Biodegradation of BDMs in the soil can be assessed by the presence of visible mulch fragments; although this is not a direct measure of biodegradation, it provides an initial estimation of mulch biodegradation. We carried out three field experiments to develop a protocol for quantifying BDM fragments in the soil after soil incorporation of mulch. Expt. 1 was done at Mount Vernon, WA, and Knoxville, TN, using five BDMs in four replications, including a polyethylene (PE) mulch reference treatment (three replications and at Mount Vernon only), and a ʽCinnamon Girl’ pumpkin (Cucurbita pepo) test crop. At the end of the growing season, mulches were tilled into the soil to a depth of 6 inches and within 16 days, five soil samples were collected with a golf hole cutter (4 inches diameter and 6 inches deep). Fifty-nine percent of the PE mulch fragments were recovered from the reference treatment. Among the remaining treatments, there was a high plot-to-plot variation as to the percent of the BDM recovered (3% to 95% at Mount Vernon, 2% to 88% at Knoxville). To exclude the possibility of mulch degradation impacting mulch recovery, in Expts. 2 and 3 (at Mount Vernon only), one BDM was laid, then tilled into the soil and sampled using the same sampling core as in Expt. 1, but all in 1 day. In Expt. 2, 15 soil samples were collected per plot, which recovered 70% of the mulch, and in Expt. 3, the entire plot was sampled by collecting 128 soil samples per plot, which recovered 62% of the mulch. In summary, sampling with a relatively large core recovered less than 70% of tilled-in mulch, there was high variability between plots within each treatment because of uneven distribution of the mulch fragments in the plot, and even 50 samples per plot did not provide an accurate estimate of the amount of mulch remaining in the field. Thus, soil sampling with a large core was ineffective, and new sampling methods are needed to assess the amount of BDM remaining in the field after soil incorporation.
CITATION STYLE
Ghimire, S., Saxton, A. M., Wszelaki, A. L., Moore, J. C., & Miles, C. A. (2017). Reliability of soil sampling method to assess visible biodegradable mulch fragments remaining in the field after soil incorporation. HortTechnology, 27(5), 644–649. https://doi.org/10.21273/HORTTECH03821-17
Mendeley helps you to discover research relevant for your work.