Motivation: Insertion of DNA segments is one mechanism by which genomes evolve. The bulk of genomic segments are now known to be transcribed into long and short non-coding RNAs (ncRNAs), promoter-associated transcripts and enhancer-templated transcripts. These various cryptic ncRNAs are thought to be dispersed in the human and other genomes by retroposition.Results: In this study, I report clear evidence for dissemination of cryptic ncRNAs transcribed from intronic and intergenic segments by retroposition. I used highly stringent conditions to find recently retroposed ncRNAs that had a poly(A) tract and were flanked by target site duplication. I identified 73 instances of retroposition in the human, mouse, and rat genomes (12, 36 and 25 instances, respectively). The inserted segments, in some cases, served as a novel exon or promoter for the associated gene, resulting in novel transcript variants. Some disseminated sequences showed sequence conservation across animals, implying a possible regulatory role. My results indicate that retroposition is one of the mechanisms for dispersion of ncRNAs. I propose that these newly inserted segments may play a role in genome evolution by potentially functioning as novel exons, promoters or enhancers. © The Author 2013.
CITATION STYLE
Hahn, Y. (2013). Evidence for the dissemination of cryptic non-coding RNAs transcribed from intronic and intergenic segments by retroposition. In Bioinformatics (Vol. 29, pp. 1593–1599). https://doi.org/10.1093/bioinformatics/btt258
Mendeley helps you to discover research relevant for your work.